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Abstract We study the effects of agent movement on equilibrium selection in net-
work based spatial coordination games with Pareto dominant and risk dominant Nash
equilibria. Our primary interest is in understanding how endogenous partner selection
on networks influences equilibrium selection in games with multiple equilibria. We
use agent based models and best response behaviors of agents to study our questions
of interest. In general, we find that allowing agents to move and choose new game
play partners greatly increases the probability of attaining the Pareto dominant Nash
equilibrium in coordination games. We also find that agent diversity increases the
ability of agents to attain larger payoffs on average.

Keywords Coordination games · Movement · Equilibrium selection ·
Agent based modeling

1 Introduction

There exists a vast literature on the emergence of cooperation and altruistic behavior
both in real world situations and in theoretical games. Much of this literature centers
around prisoner’s dilemma games either directly or as a metaphor for a real world
scenario. A related literature studies the results of coordination games where agents
receive payoffs if they are able to coordinate on the same strategy but pay a cost if they
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do not. For example, it is beneficial to an agent if her friends own computers that use
the same operating system as she does. However, it may be inconvenient and costly
if they do not (e.g. sharing files may be difficult). Continuing with this example, it
may be that one of the potential operating system choices is better than the others. If
agents coordinate on this strategy, everyone benefits. However, a tension may exist if
the better operating system also has a steeper learning curve. Thus, if an agent chooses
the better operating system, but no one else does, it may be very costly to her because
she will not have friends to consult when problems occur.

To translate this situation to a formal game, consider the following generic two
agent, two strategy simultaneous game:

Player 2
X Y

Player 1 X a, a b, c
Y c, b d, d

Throughout the paper we assume a > c, d > b such that there exist two pure strategy
Nash equilibria, X, X and Y, Y . Agents attempt to coordinate with their game play
partners on one of the two Nash equilibria. Thus, our game of interest is a standard
2 × 2 coordination game. Further, we assume that a > d, such that X, X is the Pareto
dominant Nash equilibrium. Harsanyi and Selten (1988) define equilibrium Y, Y to
be a risk dominant Nash equilibrium if (a − c)(a − c) < (d − b)(d − b) which is
equivalent to a + b < c + d. Our primary interest in this paper will be with payoffs
assigned such that Y, Y qualifies as risk dominant. We study equilibrium selection in
these games using an agent-based model.

As in the operating system example, note that there is a tension between agents
attempting to coordinate on the Pareto dominant versus the risk dominant Nash equi-
librium. All agents would prefer to coordinate on X, X , because each agent receives
a larger payoff than in Y, Y . But, should coordination not occur (one agent playing X
and the other playing Y), the agent playing X is penalized with a low payoff of b. More
importantly, as b decreases, playing X becomes more risky and playing Y becomes
more attractive.

There exists a large literature on the long run selection of equilibria in these coordi-
nation games (without agent movement). As examples, Ellison (1993); Kandori et al.
(1993) and Young (1993) study equilibrium selection in an evolutionary framework
where agents are randomly matched with game partners. They find that the risk domi-
nant Nash equilibrium is the unique stochastically stable equilibrium when agents have
a small probability of making mistakes in strategy selection. Morris (2000) studies the
spread of a Pareto dominant Nash equilibrium where agents play a spatial coordina-
tion game on various topologies. He finds that a Pareto dominant equilibrium may be
favored in some network based coordination games if the number of neighbors in the
network expands at an intermediate rate (quickly, but not too quickly).

In this paper, we explore how endogenous agent movement (which has not been
previously studied in coordination games) affects the equilibrium selection results
described above. Specifically, agents are located on a two-dimensional lattice. Agents
play a coordination game with each nearest neighbor on the network in each period.
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Agents choose a best response to last period’s play by their neighbors as their
action in the current period. Using agent based modeling, we study the evolution
of the agent strategies and the attainment of Pareto versus risk dominant Nash
equilibria.

Agent movement has previously been studied in spatial prisoner’s dilemma games.
In this field, researchers are interested in whether the ability of agents to move favors
the invasion of defecting agents into neighborhoods of cooperators, or whether the
ability of agents to move allows cooperators to escape defectors. Previous research
suggests that the ability of agents to move enhances rates of cooperation on average.
For example, Aktipis (2004) studies the behavior of a “walk-away” strategy in a spatial
prisoner’s dilemma game where agents cooperate if a rival cooperated in a previous
period or move to a new location if the rival defected in the previous period. She
finds that walk-away is a successful strategy when placed in an Axelrod (1984) style
tournament among commonly studied strategies such as tit-for-tat. Helbing and Yu
study the emergence of cooperation in a spatial prisoner’s dilemma where agents
both imitate neighbors with high paying strategies and move to nearby locations that
yield higher payoffs. They term this strategy “success driven migration” and find it to
robustly lead to cooperative outcomes in a variety of situations and noise. Barr and
Tassier (2010) study the rates of cooperation and evolution of mixed strategies in a
spatial prisoner’s dilemma game where agents are allowed to move. They find that the
opportunity to move greatly enhances the probability of agent cooperation across many
network structures. Another related literature studies the ability of agents to maintain
or sever interactions in prisoner’s dilemma games on evolving heterogeneous networks
(Ashlock et al. 1996; Biely et al. 2007; Hanaki et al. 2007; Santos et al. 2006; Van
Segbroeck et al. 2008). While fundamentally different, both the movement mechanism
studied in our paper and in the literature mentioned above and a severing ties/evolving
networks approach both lead to the ability of cooperating agents to avoid defecting
agents in a prisoner’s dilemma.

Echoing the benefits of movement in prisoner’s dilemma games, we find that adding
agent movement into a coordination game also increases the likelihood of good out-
comes. Specifically, we find that the Pareto dominant Nash equilibrium is attained
much more frequently when agents have the ability to move on the network and
choose game play partners, than when agents are not allowed to move. We also study
the effects of diverse agent types. We find that diversity in payoffs of the agent types
allows for strategies to survive longer in the populations and promotes the attainment
of higher payoffs on average.

2 Our Model

Each run of our model proceeds as follows. In the initialization procedure, N agents
are created and assigned a random location on an L × L lattice with fixed boundaries.
Note that we set N to be less than L × L so that there are some vacant locations. In
addition, each agent is assigned a random strategy, X or Y, according to a specified
probability distribution. This random initial strategy is played in the first period of the
model.
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Following the initialization procedure, each agent plays the coordination game
described in the previous section, with each nearest neighbor on the lattice.1 In each
period, each agent chooses a single action that must be played with every neighbor.
Agents choose this action as follows: The action in period one is assigned by the
initialization procedure. In each subsequent period, agents choose an action that is a
best response to their neighbors’ actions in the previous period. Specifically, an agent
calculates her average payoff for both strategy X and strategy Y against the strategies
chosen by each of her neighbors in the previous period. Whichever strategy yields a
larger average payoff is chosen in the current period. Ties are broken by the agent
playing the strategy that she most recently played.2

Following agent game play, each agent is individually given an opportunity to
move to a new vacant location on the lattice with probability m. If the agent is given
this opportunity, a random vacant location is chosen from among the set of vacant
locations on the lattice with uniform probability. The agent then calculates the best
response strategy at the new location, X or Y, and the corresponding average payoff of
that strategy. The agent then compares the average payoff of the best response at the
new location to the average payoff of the best response at the current location. If this
average payoff is greater at the new location, she moves there. Otherwise, she remains
at her current location. We then repeat this game play procedure until we generate
equilibrium behavior. We repeat the entire process (initialization and game play) for
R runs for a specified set of parameters. We take averages over these R runs and report
results for each parameter set below.

3 Results

We report average results below for R = 5,000 runs of each parameter set. We are
primarily interested in equilibrium selection differences when movement is allowed
in the model versus when movement is not allowed. Therefore, we vary the prob-
ability of a movement opportunity between m = 0 and m = 1 across different
sets of runs and compare the equilibrium selection results. Unless otherwise noted,
all experiments consist of N = 100 agents and payoffs of a = 2.0, c = 0.0, and
d = 1.0.

3.1 Variation in Risk

We begin this comparison with the following payoff selections: a = 2.0, c = 0.0, d =
1.0 so that we have the following normal form game representation:

1 In this set-up an agent can have a maximum of eight neighbors but some agents may have fewer because
of vacant locations or boundaries.
2 One motivation for this assumption is that agents must pay some small (relative to the payoffs) positive
cost to switch strategies. However, ties are exceptionally rare and for some payoff matrices are not possible.
Thus this tie-breaking assumption does not play a meaningful role in our results.
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Player 2
X Y

Player 1 X 2, 2 b, 0
Y 0, b 1, 1

We then vary b at intervals between 0 and −6. Note that X, X is the Pareto dominant
Nash equilibrium. Also, note that b ≤ 1 implies that Y, Y is a Nash equilibrium
and b < −1 implies that Y, Y is a risk dominant Nash equilibrium. Initially, we set
N = 100 and L = 12, so that there are 144 locations: 100 locations with agents and
44 vacant locations. For these runs we also set the probability of playing X in the first
period equal to 50 %. Thus, on average, there will be 50 % of agents playing X in
period one and 50 % playing Y in period one.

In Table 1 we report the average percent of agents that play strategy X in equilibrium
when no movement is allowed, m = 0, and when movement is allowed for each agent
in every period, m = 1, as a function of the payoff parameter b.

To begin, note the behavior of the model when no movement is allowed. As
expected, the percent of agents playing the Pareto dominant Nash equilibrium strategy,
X, decreases as the payoff b decreases (as b decreases, playing X becomes more risky).
Further, recall that when b < −1, Y, Y becomes a risk dominant Nash equilibrium.
And, we see in the table that for b > −1 a majority of agents play the Pareto dominant
Nash equilibrium strategy. But, for b < −1, a majority of agents play strategy Y that
corresponds to the risk dominant Nash equilibrium. At b = −1 we observe an even

Table 1 Percent of agents that coordinate on the Pareto dominant strategy, X, as a function of the payoff b

b m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

0 98.3 3.4 1.0 100.0 0.0 4.0

−0.5 80.2 13.3 1.8 100.0 0.0 5.9

−1 50.2 12.8 2.6 99.9 2.4 11.9

−1.1 24.2 14.5 4.3 99.9 2.4 12.4

−1.5 24.3 14.7 4.3 99.0 8.7 19.4

−2 9.1 9.1 4.4 72.2 38.4 70.6

−2.5 2.8 4.8 4.0 51.1 42.8 82.0

−3 1.6 3.4 3.4 14.7 26.0 53.7

−3.5 0.4 1.3 2.7 8.2 18.5 34.3

−4 0.3 1.1 2.6 5.0 13.3 22.5

−4.5 0.3 1.1 2.5 4.4 11.7 23.1

−5 0.3 1.0 2.4 1.9 6.6 14.0

−5.5 0.1 0.5 2.1 0.6 3.2 6.3

−6 0.1 0.5 2.1 0.7 2.9 6.6

Other payoffs: a = 2.0, c = 0.0, d = 1.0. No movement, m = 0 versus movement, m = 1. 12×12 lattice,
N = 100 agents. Also reported are the average number of time periods taken to reach equilibrium and the
SD
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split between the two strategies in equilibrium. These basic results correspond well
with the existing literature on equilibrium selection in coordination games reported in
the introduction. Although our model is different (network based matching vs random
matching), the risk dominant equilibrium is still favored in our model when movement
is not allowed.

More interesting is the comparison of the results when movement is not allowed to
the results when movement is allowed. As one can see in the table, allowing movement
greatly increases the probability that the Pareto dominant strategy is played in equilib-
rium. Even at levels where costs of non-coordination are fairly large such as b = −2.5
the Pareto dominant Nash equilibrium is still played in a majority of runs (51.1 %).
Without movement, only 2.8 % of runs result in the Pareto dominant Nash equilibrium
at b = −2.5. Further, when movement is allowed, it is still possible to generate small
numbers of agents who play the Pareto dominant strategy in equilibrium even when
doing so is very risky, when b is very small.

The ability of agents to more frequently coordinate on the Pareto dominant Nash
equilibrium appears to primarily depend on two things: the ability of agents to form
pockets of agents playing the X, X Nash equilibrium early in the run and the abil-
ity of strategy X to survive until these pockets can form. As intuition, imagine a
small pocket (maybe only two or three agents) playing X, X with each other and
with no strategy Y agents connected to them. If there is sufficient room around this
small group of agents, then more agents can join the group; the X, X group grows.
However if the network is very dense, it may be unlikely that the small group can
form in isolation away from agents playing Y. In this case it is difficult for the
X, X strategy to spread because new agents joining the group may have to play
with another agent playing Y nearby. If b is small enough it may not be optimal
for the new agent to play X when one of his games will be against an agent playing
Y. The X, X group cannot grow. Further, if the new agent plays Y, it may tip some
of the X, X agents to playing Y. In this case, the X, X group may shrink. With a
less dense network it is less likely that an initial X, X group will shrink and more
likely that it will grow.3 Second, and more simply, in order for the Pareto dominant
Nash equilibrium to be attained, strategy X must survive long enough in the popula-
tion for agents to coordinate on it. We will discuss this further in Sect. 4 later in the
paper.

Also note in the table the time to reach equilibrium. When movement is not allowed,
the equilibrium is reached very quickly; less than five periods on average. When
movement is allowed, it takes longer to reach an equilibrium. Partly, this occurs because
the strategy space for the game is larger when movement is allowed. In addition, note
that parameter values, such as b = −2.5, where each of the two equilibria result a
significant number of times. Here it take much longer to reach equilibrium. As intuition
suggests, if either equilibrium is likely to be reached, it may take more time periods
for agents to coordinate on one of them. Thus even with movement, equilibrium is

3 The effects of network density and clustering are also discussed in Nowak and May (1992) and Watts
(1999).
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Table 2 Percent of agents that coordinate on the Pareto dominant strategy, X, as a function of population
size, N

Agents m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

70 19.0 9.3 3.1 69.9 2.4 13.1

85 20.9 11.5 3.6 84.9 3.1 14.4

100 24.2 14.6 4.4 99.0 8.8 19.8

115 24.3 18.0 5.2 96.4 34.7 39.8

120 25.7 19.6 5.6 82.9 43.1 44.6

130 22.0 21.4 6.5 40.5 37.7 50.8

Payoffs: a = 2.0, b = −1.5, c = 0.0, d = 1.0. No movement, m = 0 versus movement, m = 1. 12 × 12
lattice. Also reported are the average number of time periods taken to reach equilibrium and SD

reached fairly quickly when b is large or small, but for intermediate values, the time
to reach equilibrium can be much longer as reported in the table.4

3.2 Variation in Population Size

Next we consider how the density of agents on the lattice changes equilibrium selection.
As mentioned above, a more dense network should favor the risk dominant Nash
equilibrium. Here we leave the payoffs for a, c, and d as above and set b = −1.5
(an intermediate value for b where we had strong effects for movement, as can be
seen in Table 1). Again we set the initial strategy distribution equal to 50 % for each
strategy.

As reported in Table 2, changing the agent density does little to the equilibrium
selection results when movement is not allowed. A more dense network slightly
decreases the probability of coordinating on the Pareto dominant Nash equilibrium.
However, when movement is allowed, a more dense lattice makes it more difficult to
coordinate on the Pareto dominant Nash equilibrium, as expected. Again this occurs
for two reasons: First, when the network is very dense, it may be more difficult to
find a vacant location near a group of X, X coordinating agents. Second, because the
network is more dense it is difficult for X, X coordination to spread. Each location will
have more occupied locations adjacent to it. Thus it may be difficult for a small group
of agents to “tip” toward the Pareto dominant Nash equilibrium. When the network
is less densely populated it may be easy to find small groups of unconnected agents
that can coordinate on the X, X Nash equilibrium. Then once these agents coordinate,
movement into adjacent vacant cells can allow this equilibrium to spread. This process
is more difficult when the lattice is densely populated.

4 We consider two robustness tests of our base results in the Appendix to this paper: random movement
and a torus based model that eliminates edge effects.
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Table 3 Percent of agents that coordinate on the Pareto dominant strategy, X, as a function of the initial
percentage of strategy X agents

P(x) m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

70 76.9 12.5 2.7 100.0 0.0 4.2

60 51.1 16.7 3.8 100.0 0.0 7.7

50 24.4 14.6 4.3 98.9 9.5 19.5

40 8.5 8.7 3.7 83.7 34.4 42.6

30 2.5 4.4 2.7 47.5 47.1 41.3

20 0.5 1.7 1.9 15.7 34.5 18.6

Payoffs: a = 2.0, b = −1.5, a = 0.0, d = 1.0. No movement, m = 0 versus movement, a = 1. 12 × 12
lattice, N = 100 agents. Also reported are the average number of time periods taken to reach equilibrium
and SD

3.3 Variation in Initial Strategy

Next, we vary the initial strategy distribution in the population. Again we leave the
payoffs unchanged with a = 2.0, b = −1.5, c = 0.0, and d = 1.0 and return to
N = 100 agents. But, we vary the initial percentage of agents playing strategy X in
period one from 20 to 70 % (with the complement playing Y). We report the results
in Table 3.

There are two items of note in the table. First, the initial distribution of agents has a
large effect on the equilibrium selected. Moving the initial percentage of agents playing
X slightly above (below) 50 % greatly increases (decreases) the probability of agents
coordinating on the X, X Nash equilibrium. Moving the initial players of X above or
below the 50 % threshold changes the typical majority of game play partner strategies
to X or Y. Because of the positive feedbacks associated with best response dynamics
in coordination games this tips the dynamic process of equilibrium selection toward
the more common strategy. Of course, this dynamic process is affected by the size of
the b payoff as well as the ability to move. If the b payoff is exceptionally small it will
still be difficult to obtain the Pareto dominant Nash equilibrium. Second, movement
can act with large force to counteract the initial distribution. For instance, when only
40 % of agents play strategy X in the initial period, only 8.5 % of agents play X in
equilibrium when movement is not allowed. But, allowing movement increases the
equilibrium incidence of X to 83.7 %. Even when only 30 % of agents play strategy
X initially, movement can allow a significant percentage of agents to coordinate on
the Pareto efficient strategy. In this case 47.5 % of agents play X in equilibrium. As
described in the Sect. 3 of the paper, movement allows clusters of X playing agents to
more easily form which then leads to neighbors being more and more likely to play
X. Thus, as stated above, the ability to move and select game play partners can have a
large effect on the equilibrium selected and may lead to a majority playing the Pareto
dominant Nash equilibrium even when starting with fewer than 50 % of agents playing
X. Most importantly we again see that movement greatly increases the likelihood of
the population selecting the Pareto dominant Nash equilibrium.
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4 Heterogeneous Agents

So far, all agents in our model have been identical in terms of payoffs. With these
identical agents we have demonstrated that movement leads to much higher levels of
coordination on the Pareto dominant Nash equilibrium. The effect of heterogeneous
payoffs has been studied in other contexts. For instance, Fort (2008) examines the evo-
lution of game payoffs and the emergence of cooperation in the resulting steady state.
Bednar and Page (2007) study the evolution of strategies when heterogeneous agents
have cognitive constraints and play an ensemble of heterogeneous games. Related to
these studies we now consider agents of various types interacting together. Different
types of agents have different payoffs in the same game. This may occur because
agents differ in their risk preferences, or because they have different preferences over
game outcomes. First we assume that one type of agent pays a larger cost from a lack
of coordination when playing strategy X. Specifically, there are two types of agents Q
and R. Payoffs for the game with heterogeneous agent types are shown below:

Player 2 (type R)
X Y

Player 1 (type Q) X a, a bq , c
Y c, br d, d

The subscript on the b payoff indicates the payoff to the agent of a particular type. We
assume that bq > br so that attempting to coordinate on the Pareto dominant Nash
equilibrium is more risky for a type R player. As an example, the payoffs for a game
where a type 1 and a type 2 player interact may be br = −4 and bq = −1 resulting in
the following game:

Player 2 (type R)
X Y

Player 1 (type Q) X 2, 2 −1, 0
Y 0,−4 1, 1

Of course, two players of the same type may interact and then the payoffs look as in
the examples in the previous section. For two type Q agents this would be:

Player 2 (type Q)
X Y

Player 1 (type Q) X 2, 2 −1, 0
Y 0,−1 1, 1

And, for two type R agents this would be:

Player 2 (type R)
X Y

Player 1 (type R) X 2, 2 −4, 0
Y 0,−4 1, 1
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Note that the type R agent still faces more risk for playing X regardless of what type
agent she is paired with.

In this setup we want to investigate how the distribution of payoffs across the agent
types may change the attainment of equilibria. To do so we hold the average payoff
across agents in the population constant. We begin with 50 type Q and 50 type R
agents in the population. We want to compare the effect of heterogeneous payoffs to
a base case with homogeneous payoffs. As an example, set the base case payoffs as
bq = br = −4. We then vary bq and br so that the average remains −4, (for example
bq = −2, br = −6). Thus the average agent in the population is constant (even
though the average agent does not exist in the population in the second case). We
report two sets of experiments under the conditions reported above in Tables 4 and 5.

As one can see in the tables, increasing the diversity of agent types typically has an
effect that leads to a greater likelihood of coordinating on the Pareto dominant Nash
equilibrium for both the no movement and movement scenarios. It appears that, once
the system has some agents coordinating on the Pareto dominant equilibrium, that this
group provides a seed from which further Pareto coordination occurs. The results are

Table 4 Percent of agents that coordinate on the Pareto dominant strategy, X, as a function of bq and br
payoffs

bq br m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

0 −8 28.0 8.4 3.3 63.1 23.2 52.4

−1 −7 5.9 6.1 3.7 15.4 16.3 32.5

−2 −6 1.0 2.5 3.1 7.2 12.8 27.5

−3 −5 0.6 1.8 2.8 4.6 11.4 24.6

−4 −4 0.4 1.4 2.6 4.7 12.2 21.2

Payoffs: a = 2.0, c = 0.0, d = 1.0. No movement, m = 0 versus movement, m = 1. 12 × 12 lattice,
N = 100 agents. Also reported are the average number of time periods taken to reach equilibrium and SD

Table 5 Percent of agents that coordinate on the Pareto dominant strategy, X, as a function of bq and br
payoffs

bq br m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

1 −5 63.1 5.5 2.0 100.0 1.3 17.3

0.5 −4.5 59.8 8.1 2.4 99.9 1.5 15.3

0 −4 41.3 10.8 3.0 99.4 4.9 22.1

−0.5 −3.5 21.4 11.4 3.9 95.3 16.8 34.7

−1 −3 17.4 10.9 4.0 81.4 33.4 69.5

−1.5 −2.5 9.2 9.6 4.6 88.6 28.5 54.7

−2 −2 9.2 9.0 4.4 72.2 38.3 73.0

Payoffs: a = 2.0, c = 0.0, d = 1.0. No movement, m = 0 versus movement, m = 1. 12 × 12 lattice. Also
reported are the average number of time periods taken to reach equilibrium and SD
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Table 6 Percent of agents that coordinate on the Pareto dominant strategy, X, as a function of the percent
of type 1 (less risk) versus type 2 (more risk) agents

% Type distribution bq br m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

Baseline (50 % each type) −4 −4 0.3 1.3 2.6 5.1 13.4 22.5

Few type Q (20 %) −2 −5 0.7 1.9 2.8 6.7 12.7 28.4

Many type Q (80 %) −2 −12 3.0 4.6 3.6 23.9 28.9 63.0

Payoffs: a = 2.0, c = 0.0, d = 1.0. No movement, m = 0 versus movement, m = 1. 12 × 12 lattice. Also
reported are the average number of time periods taken to reach equilibrium and SD

strongest when one of the players faces no additional cost of trying to coordinate on
the Pareto dominant Nash equilibrium (when bq is largest). Interestingly, we do not
find evidence of sorting by type among the agents. The agents remain evenly mixed
throughout all of these runs, suggesting that coordination on an equilibrium is fast
relative to the spatial sorting of agents.

As a final example of agent heterogeneity we allow the share of agents who face a
larger cost of non-coordination to vary but alter the bq and br payoffs so that, again, the
average agent stays the same. Again, we start with a base case where bq = br = −4.

Then we consider two variations: In the first experiment, we set bq = −2 for 20 %
of the agents. Then, in order to keep the average payoffs constant, we set br = −4.5
for the remaining 80 % of the agents (so that the average b payoff is still −4). In a
second experiment, we again set bq = −2 but we do so for 80 % of the agents. The
remaining 20 % have br = −12 (again to keep the average b payoff at −4). One can
view this experiment as thinking about policy implications for promoting the Pareto
dominant outcome. Perhaps a government is able to provide assurances about payoffs
in the event of non-coordination to the type q agents but in doing so places a larger
cost onto the type r agents that fail to coordinate. The results are shown in Table 6.

We find that shifting a small share of the agents toward facing smaller non-
coordination costs does little to move the system toward the Pareto dominant equi-
librium. Instead shifting a large percentage toward smaller non-coordination costs
and a small percentage toward very large non-coordination costs (br = −12) greatly
enhances the ability of agents to coordinate on the Pareto dominant equilibrium when
movement is allowed. Further, the results suggest that some agents facing large non-
coordination costs should not impact equilibrium attainment in coordination games.
And, it may be beneficial if the additional cost this small fraction face is distributed
away from a large fraction of the population. Again, we do not find evidence of agent
sorting by type. Equilibrium convergence appears to occur prior to any agent sorting.

4.1 Conflicting Preferences

As a final experiment, we consider a case where agent preferences may not be aligned
concerning the Pareto dominant equilibrium. Again let there be two types of agents.
This time label them as type E and type F. A type E agent faces payoffs that are

123



390 D. Hagmann, T. Tassier

identical in ordering to what has been discussed above. So that, if two type E agents
are matched the game and payoffs are identical to the games already displayed.

Player 2 (type E)
X Y

Player 1 (type E) X a, a b, c
Y c, b d, d

Type F agents have reversed preference orderings. For a type F agent, coordination on
Y, Y results in the large payoff of a and the greatest cost of non-coordination occurs
with strategy Y as well. Finally, for a type F agent, coordination on X, X results in a
lower payoff of d. Thus if two type F agents are matched, the game payoff orderings
are reversed so that the game appears as:

Player 2 (type F)
X Y

Player 1 (type F) X d, d c, b
Y b, c a, a

Here the agents prefer to coordinate on the bottom right Y,Y Pareto dominant Nash
equilibrium (because a > d). Finally, if a type E agent is matched with a type F agent
they play a game with the following payoff structure:

Player 2 (type F)
X Y

Player 1 (type E) X a, d b, b
Y c, c d, a

where again a > c and d > b so that there are two Nash equilibria, and we also continue
to assume that a > d so that the row player prefers the equilibrium corresponding to
X,X and the column player prefers the equilibrium Y,Y. This is an example of what is
commonly called the “battle of the sexes” game. As a more concrete example consider:

Player 2 (type F)
X Y

Player 1 (type E) X 2, 1 −2,−2
Y 0, 0 1, 2

The issue here is obviously that the agents want to coordinate on one of the two
Nash equilibria but the order of preference among the equilibria and the cost of non-
coordination faced is reversed if playing an agent of the other type. Playing safe for
one type is playing risky for the other type. Again, note that play between agents can be
with an agent’s own type or with the opposite type. And, the players cannot recognize
the type of their opponents.

Again, we use the standard payoffs listed above a = 2, c = 0, and d = 1 and
vary the b payoff. We have 50 % of each type of agent. We calculate the percentage
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Table 7 Percent of agents that coordinate on their preferred strategy, (X for type E and Y for type F), as a
function of the payoff b

b m = 0 m = 1

Mean (%) SD (%) Time Similarity Mean (%) SD (%) Time Similarity

−1 49.8 4.8 2.6 49.5 98.8 5.3 29.6 98.3

−2 40.6 5.0 2.7 49.6 96.7 8.3 36.7 95.4

−3 33.7 5.1 2.7 49.4 89.4 13.0 45.9 85.6

−4 27.8 5.2 2.8 49.5 88.7 13.1 47.4 84.6

−5 22.5 5.0 2.7 49.4 85.1 14.9 51.8 80.6

−6 19.1 4.7 2.8 49.5 81.1 18.2 49.2 78.3

Other payoffs: a = 2.0, c = 0.0, d = 1.0. No movement, m = 0 versus movement, m = 1. 12×12 lattice.
Average number of time periods to reach equilibrium, similarity at equilibrium, and SD also reported

of agents that coordinate on their preferred Nash equilibrium (the Nash equilibrium
that yields the highest payoff for the agent’s type—strategy X for type E and strategy
Y for type F) as well as similarity of neighbors (the percentage of neighbors that are
the same type). The results are reported in Table 7.

Interestingly, when agents are allowed to move, they are able to coordinate on
their preferred Nash equilibrium in a very high percentage of runs even when the
cost of non-coordination is very great. This is particularly striking when compared
to Table 1. In the homogeneous agents case reported in Table 1, when b = −6 less
than 1 % of agents were able to coordinate on the Pareto dominant Nash equilibrium
with movement. Here, over 80 % of agents are able to coordinate on their preferred
Nash equilibrium. As one can see from the table they do so by strongly sorting by
type. A very large majority of agents sort themselves into groups by type and play
the preferred strategy for their type. A typical initial configuration and the resulting
equilibrium with movement is shown in Figs. 1 and 2. As seen in the figure, the agents
typically sort exclusively (or nearly so) by type and each group plays its preferred
strategy. When the b payoff is sufficiently large, a configuration like this occurs nearly
100 % of the time.

These results are interesting in two main respects: First, agents are better able to find
a spatial region where their favored equilibrium is being played because the diversity
of types in the population allows for each strategy (X and Y) to be present. With high
probability there is some location on the lattice where an agent’s preferred strategy is
being played. Once the agent finds a location like this through random movement, the
agent moves there, that region grows and further locks in that particular equilibrium
locally. The area near this region then becomes even more likely to attract additional
agents of this type. If we juxtapose this result with those of the base results section,
again we see how movement allows for the attainment of the Pareto dominant Nash
equilibrium in the main results of the paper. If the Pareto dominant strategy can survive
long enough, movement allows best response to eventually find the region where this
strategy is being played. So, as long as agents do not converge too quickly to the risk
dominant Nash equilibrium, they are able to find a subset of agents playing the Pareto
dominant Nash equilibrium and add to the region of space where this equilibrium
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Fig. 1 Initial random
configuration. Color represents
strategy played. “People” are
type E agents, circles are type F
agents

Fig. 2 Representative
equilibrium configuration. Color
represents strategy played.
“People” are type E agents,
circles are type F agents

occurs. Because this region grows it becomes even easier for other agents of this
type to find this region. Thus positive feedbacks lead to the Pareto dominant Nash
equilibrium when movement is allowed as long as this strategy can survive initially.
Second, here we see an example of the benefits of diversity. Diverse agents allow
strategies to survive longer in the population and provide for better opportunities for
agents to reach preferred outcomes. With more homogeneous populations, it is easier
for strategies to quickly die out and suboptimal outcomes may result.
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5 Conclusion

The results we report in this paper are important in four main respects: First, we extend
the results of movement in prisoner’s dilemma games to coordination games and show
that the effects of movement are beneficial here as well. Second, we extend the results
on equilibrium selection in coordination games. When agents are allowed to move, the
attainment of a Pareto dominant Nash equilibrium becomes much more likely. Third,
introducing heterogeneous agents into the model can greatly improve coordination
game outcomes when agents are allowed to move. This occurs primarily because
having a diversity of agent types in the model allows long run beneficial strategies
to survive longer in the initial population of agents thereby increasing the probability
that an agent can find partners playing her preferred strategy. Without agent diversity
this preferred strategy sometimes dies out before agents are able to coordinate on it.
Fourth combining our results with the results of Barr and Tassier (2010) on prisoner’s
dilemma games suggests that agent movement can have very large effects that allow
for more cooperative behavior. Perhaps most importantly, the benefits of movement
come with very simple strategies. Agents do not need to recognize another agent’s type
or some other characteristic; they do not need sophisticated strategies with a memory
to create reputations or punishments. The agents simply need to be able to leave a
location when a better opportunity arrives at a randomly chosen location elsewhere.
Yet, even with this simplicity, the ability to move leads to powerful and beneficial
effects.
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Appendix: Additional Results

In addition to the standard model above, we consider two models as robustness tests:
random movement and interaction on a torus.5 First, we consider a random movement
model similar to Sicardi et al. (2008) who incorporates random movement into several
spatial games such as prisoner’s dilemma, snow drift, and stag hunt. In our model
agents behave as described above except, when given an opportunity to move, they do
so regardless of whether the resulting average payoffs at the new location are better
or worse than at her current location. These results are presented in Table 8.

In the table the no movement results are nearly identical to those of Table 1. (This
is expected as this is simply another set of random draws of the same no-movement
model presented in Sect. 3). However, when random movement occurs, we see much
lower rates of Pareto dominant cooperation for values of b where Y is the risk dominant
strategy, b ≤ −1. These results echo those of Helbing and Yu (2009) in that agent
movement leads to better outcomes when agents move purposely to locations yielding
better outcomes but not otherwise.

5 We thank an anonymous reviewer for suggesting these two experiments.
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Table 8 Random movement results: percent of agents that coordinate on the Pareto dominant strategy, X,
as a function of the payoff b

b m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

0 98.3 3.4 1.0 100.0 0.0 4.1

−0.5 80.2 13.4 1.7 99.6 6.2 14.0

−1 49.8 12.8 2.6 0.0 0.0 8.2

−1.1 23.9 14.4 4.3 0.0 0.0 8.0

−1.5 24.5 14.6 4.3 0.0 0.0 6.5

−2 8.8 8.7 4.4 0.0 0.0 3.8

−2.5 2.9 4.9 3.9 0.0 0.0 3.0

−3 1.7 3.4 3.5 0.0 0.0 2.5

−3.5 0.4 1.3 2.7 0.0 0.0 2.4

−4 0.4 1.3 2.6 0.0 0.0 2.3

−4.5 0.3 1.2 2.5 0.0 0.0 2.3

−5 0.3 1.0 2.4 0.0 0.0 2.0

−5.5 0.2 0.6 2.1 0.0 0.0 2.0

−6 0.2 0.6 2.1 0.0 0.0 2.0

Other payoffs: a = 2.0, c = 0.0, d = 1.0. No movement, m = 0 versus random movement, m = 1.
12 × 12 lattice, N = 100 agents. Also reported are the average number of time periods taken to reach
equilibrium and the SD

Table 9 Torus model: percent of agents that coordinate on the Pareto dominant strategy, X, as a function
of the payoff b

b m = 0 m = 1

Mean (%) SD (%) Time Mean (%) SD (%) Time

0 99.9 1.0 0.9 100.0 0.0 2.9

−0.5 86.2 13.5 1.6 100.0 0.0 4.3

−1 49.8 14.2 2.8 100.0 1.1 8.2

−1.1 19.9 16.5 5.1 100.0 1.2 8.4

−1.5 19.8 16.4 5.1 99.1 8.9 14.1

−2 2.9 5.8 4.4 62.2 42.6 62.8

−2.5 0.2 1.3 3.2 38.8 42.6 63.2

−3 0.1 1.1 2.9 5.5 15.2 25.8

−3.5 0.0 0.3 2.3 2.9 9.5 15.7

−4 0.0 0.3 2.2 1.2 4.7 7.1

−4.5 0.0 0.2 2.2 0.8 4.1 8.1

−5 0.0 0.1 2.1 0.3 1.9 4.4

−5.5 0.0 0.1 1.9 0.0 0.7 2.6

−6 0.0 0.1 2.0 0.0 0.4 2.5

Other payoffs: a = 2.0, c = 0.0, d = 1.0. No movement, m = 0 versus movement, m = 1. 12×12 lattice,
N = 100 agents. Also reported are the average number of time periods taken to reach equilibrium and the
SD
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Second, to check for border or edge effects we change our two-dimensional lattice to
a torus where edges “wrap around” to the opposite edge. These results are presented
in Table 9. As reported in the table, the results are similar to those of Table 1, but
with small decreases in the incidence of Pareto dominant coordination for both the
no-movement and movement experiments. This likely occurs because edges limit the
number of neighbors and make it slightly easier for some agents to achieve Pareto
dominant coordination. Overall though, the differences between the base model and
the torus model are minimal and the primary result that movement enhances Pareto
dominant coordination holds in both models.
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